Application of layered poly (L-lactic acid) cell free scaffold in a rabbit rotator cuff defect model
نویسندگان
چکیده
BACKGROUND This study evaluated the application of a layered cell free poly (L-lactic acid) (PLLA) scaffold to regenerate an infraspinatus tendon defect in a rabbit model. We hypothesized that PLLA scaffold without cultivated cells would lead to regeneration of tissue with mechanical properties similar to reattached infraspinatus without tendon defects. METHODS Layered PLLA fabric with a smooth surface on one side and a pile-finished surface on the other side was used. Novel form of layered PLLA scaffold was created by superimposing 2 PLLA fabrics. Defects of the infraspinatus tendon were created in 32 rabbits and the PLLA scaffolds were transplanted, four rabbits were used as normal control. Contralateral infraspinatus tendons were reattached to humeral head without scaffold implantation. Histological and mechanical evaluations were performed at 4, 8, and 16 weeks after operation. RESULTS At 4 weeks postoperatively, cell migration was observed in the interstice of the PLLA fibers. Regenerated tissue was directly connected to the bone composed mainly of type III collagen, at 16 weeks postoperatively. The ultimate failure load increased in a time-dependent manner and no statistical difference was seen between normal infraspinatus tendon and scaffold group at 8 and 16 weeks postoperatively. There were no differences between scaffold group and reattach group at each time of point. The stiffness did not improve significantly in both groups. CONCLUSIONS A novel form of layered PLLA scaffold has the potential to induce cell migration into the scaffold and to bridge the tendon defect with mechanical properties similar to reattached infraspinatus tendon model.
منابع مشابه
Regeneration of rotator cuff tear using electrospun poly(d,l-Lactide-Co-Glycolide) scaffolds in a rabbit model.
PURPOSE The purpose of this study was to evaluate an application of poly(d,l-lactide-co-glycolide) (PLG) scaffold created by electrospinning in a rabbit rotator cuff defect model. METHODS Forty-two Japanese white rabbits were used in this study. Defects of the infraspinatus tendon were created, and the PLG scaffolds were implanted. Contralateral infraspinatus tendons were reattached without c...
متن کاملDifferentiation of Human Mesenchymal Stem Cell into Chonderocyte Like Cells 3D Poly Lactic Acid Glycosaminoglycan (PCL-GAG) Nano Fibre Scaffold
Introduction: Failure of human body tissue and organs is believed to be one of the most important health problems all over the world. The great challenge for tissue engineers is to optimize suitable systems to separate, proliferate and differentiate the cells so that they can set out to create tissue by a harmonic 3-D growth. Therefore, the tissue engineers must provide an environment like the ...
متن کاملBiological Evaluation of Flexible Polyurethane/Poly l-Lactic Acid Composite Scaffold as a Potential Filler for Bone Regeneration
Degradable bone graft substitute for large-volume bone defects is a continuously developing field in orthopedics. With the advance in biomaterial in past decades, a wide range of new materials has been investigated for their potential in this application. When compared to common biopolymers within the field such as PLA or PCL, elastomers such as polyurethane offer some unique advantages in term...
متن کاملAllogenous tendon stem/progenitor cells in silk scaffold for functional shoulder repair.
Tendon stem/progenitor cells (TSPCs) were recently identified within tendon tissues. The aim of this study was to investigate TSPC-seeded knitted silk-collagen sponge scaffold for functional shoulder repair. The multidifferentiation potential, proliferation, and immune properties of TSPCs were investigated in vitro, while the efficacy of TSPC-seeded knitted silk-collagen sponge scaffolds in pr...
متن کاملNovel nanofiber-based scaffold for rotator cuff repair and augmentation.
The debilitating effects of rotator cuff tears and the high incidence of failure associated with current grafts underscore the clinical demand for functional solutions for tendon repair and augmentation. To address this challenge, we have designed a poly(lactide-co-glycolide) (PLGA) nanofiber-based scaffold for rotator cuff tendon tissue engineering. In addition to scaffold design and character...
متن کامل